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Multidimensional Heat Transfer 
H e a t  D i f f u s io n  E q u a t io n
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• This equation governs the Cartesian, temperature 
distribution for a three-dimensional unsteady, heat transfer 
problem involving heat generation.
• For steady state ∂/ ∂t = 0

• No generation

• To solve for the full equation, it requires a total of six 
boundary conditions: two for each direction.  Only one initial 
condition is needed to account for the transient behavior.

&q = 0
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Two-D, Steady State Case
For a 2 - D,  steady state situation, the heat equation is simplified to

 it needs two boundary conditions in each direction.
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There are three approaches to solve this equation:
• Numerical Method: Finite difference or finite element schemes, 
usually will be solved using computers.
• Graphical Method: Limited use.  However, the conduction 
shape factor concept derived under this concept can be useful for 
specific configurations.  (see Table 4.1 for selected configurations)
• Analytical Method: The mathematical equation can be solved 
using techniques like the method of separation of variables.  (refer 
to handout)
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Conduction Shape Factor
This approach applied to 2-D conduction involving two 
isothermal surfaces, with all other surfaces being adiabatic.  
The heat transfer from one surface (at a temperature T1) to the 
other surface (at T2) can be expressed as: q=Sk(T1-T2) where k 
is the thermal conductivity of the solid and S is the conduction
shape factor.

• The shape factor can be related to the thermal resistance: 
q=Sk(T1-T2)=(T1-T2)/(1/kS)= (T1-T2)/Rt
where Rt = 1/(kS)
• 1-D heat transfer can use shape factor also.  Ex: heat transfer 
inside a plane wall of thickness L is q=kA(∆T/L), S=A/L
• Common shape factors for selected configurations can be 
found in Table 4.1



Pradeep datta HT/M3/L1/V1/2004 4

Example
An Alaska oil pipe line is buried in the earth at a depth of 1 m.  
The horizontal pipe is a thin-walled of outside diameter of 50 
cm.  The pipe is very long and the averaged temperature of the 
oil is 100°C and the ground soil temperature is at -20 °C 
(ksoil=0.5W/m.K), estimate the heat loss per unit length of pipe.

z=1 m

T2

T1

From Table 8.7, case 1. 
L>>D, z>3D/2
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Example (cont.)
If the mass flow rate of the oil is 2 kg/s and the specific heat of the oil 
is 2 kJ/kg.K, determine the temperature change in 1 m of pipe length.

q mC T T q
mC

CP
P

= = = = °& ,
&

.
*

. ( )∆ ∆
181 2

2000 2
0 045

Therefore, the total temperature variation can be significant if the pipe 
is very long.  For example, 45°C for every 1 km of pipe length.
• Heating might be needed to prevent the oil from freezing up.
• The heat transfer can not be considered constant for a long pipe

Length dx

Ground at -20°C

Heat transfer to the ground (q)

m cpT m cp (T+ dT)
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Example (cont.)
Heat Transfer at section with a temperature T(x)

q = 2 k(dx)
ln(4z / D)

Energy balance:  mC

integrate

 at inlet x = 0,  T(0) = 100 C,  C = 120

T(x) = -20 +120
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• Temperature drops exponentially 
from the initial temp. of 100°C
• It reaches 0°C at x=4740 m, 
therefore, reheating is required 
every 4.7 km. 
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Numerical Methods
Due to the increasing complexities encountered in the development 
of modern technology, analytical solutions usually are not available.   
For these problems, numerical solutions obtained using high-speed 
computer are very useful, especially when the geometry of the object 
of interest is irregular, or the boundary conditions are nonlinear.  In 
numerical analysis, two different approaches are commonly used: 
the finite difference and the finite element methods.  In heat transfer 
problems, the finite difference method is used more often and will be 
discussed here.  The finite difference method involves:

Establish nodal networks
Derive finite difference approximations for the governing 

equation at both interior and exterior nodal points
Develop a system of simultaneous algebraic nodal equations
Solve the system of equations using numerical schemes 
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The Nodal Networks
The basic idea is to subdivide the area of interest into sub-volumes 
with the distance between adjacent nodes by Dx and Dy as shown.  
If the distance between points is small enough, the differential
equation can be approximated locally by a set of finite difference 
equations.  Each node now represents a small region where the 
nodal temperature is a measure of the average temperature of the
region.
Example:

m,n

m,n+1

m,n-1

m+1, nm-1,n

∆y

∆x

m-½,n
intermediate points m+½,nx=m∆x, y=n∆y
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Finite Difference Approximation
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Finite Difference Approximation (cont.)
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Next, approximate the second order differentiation at m,n
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Finite Difference Approximation (cont.)
2 2
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To model the steady state, no generation heat equation: 0
This approximation can be simplified by specify x= y
and the nodal 
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equation can be obtained as
4 0

This equation approximates the nodal temperature distribution based on
the heat equation.  This approximation is improved when the distance
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A System of Algebraic Equations
• The nodal equations derived previously are valid for all interior 
points satisfying the steady state, no generation heat equation.
For each node, there is one such equation.
For example: for nodal point m=3, n=4, the equation is
T2,4 + T4,4 + T3,3 + T3,5 - 4T3,4 =0
T3,4=(1/4)(T2,4 + T4,4 + T3,3 + T3,5)

• Nodal relation table for exterior nodes (boundary conditions) 
can be found in standard heat transfer textbooks (Table 4.2 of our 
textbook).   

• Derive one equation for each nodal point (including both 
interior and exterior points) in the system of interest.  The result is 
a system of  N algebraic equations for a total of N nodal points.



Pradeep datta HT/M3/L1/V1/2004 13

Matrix Form

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

The system of equations:

N N

N N

N N NN N N

a T a T a T C
a T a T a T C

a T a T a T C

+ + + =
+ + + =

+ + + =
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A total of N algebraic equations for the N nodal points and the 
system can be expressed as a matrix formulation: [A][T]=[C]

11 12 1 1 1

21 22 2 2 2

1 2

 = , ,

N
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N N NN N N

a a a T C
a a a T C

where A T C

a a a T C
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Numerical Solutions
Matrix form: [A][T]=[C].  
From linear algebra: [A]-1[A][T]=[A]-1[C],  [T]=[A]-1[C]
where [A]-1 is the inverse of matrix [A].  [T] is the solution vector.

• Matrix inversion requires cumbersome numerical computations and is 
not efficient if the order of the matrix is high (>10)

• Gauss elimination method and other matrix solvers are usually 
available in many numerical solution package.  For example, 
“Numerical Recipes” by Cambridge University Press or their web 
source at www.nr.com.

• For high order matrix, iterative methods are usually more efficient.  
The famous Jacobi & Gauss-Seidel iteration methods will be 
introduced in the following.
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Iteration

1

1 1

31 1 32 2 33 3 1 1

1
( ) ( ) ( 1)

1

General algebraic equation for nodal point:

,

(Example : , 3)
Rewrite the equation of the form:
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• (k) - specify the level of the iteration, (k-1) means the present level 
and (k) represents the new level.
• An initial guess (k=0) is needed to start the iteration.
• By substituting iterated values at (k-1) into the equation, the new 
values at iteration (k) can be estimated
• The iteration will be stopped when max⎜Ti

(k)-Ti
(k-1)⎟≤ε, where ε

specifies a predetermined value of acceptable error

Replace (k) by (k-1)
for the Jacobi iteration
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Example
Solve the following system of equations using (a) the Jacobi
methos, (b) the Gauss Seidel iteration method.

4 2 11
2 0 3

2 4 16

X Y Z
X Y Z
X Y Z

+ + =
− + + =

+ + =

,
* ,

(a) Jacobi method: use initial guess X0=Y0=Z0=1, 
stop when max⎜Xk-Xk-1,Yk-Yk-1,Zk-Zk-1⎥ ≤ 0.1
First iteration: 
X1= (11/4) - (1/2)Y0 - (1/4)Z0 = 2
Y1= (3/2) + (1/2)X0 = 2
Z1= 4 - (1/2) X0 - (1/4)Y0 = 13/4

Reorganize into new form:

X = 11
4

- 1
2

Y - 1
4

Z

Y = 3
2

+ 1
2

X + 0 * Z

Z = 4 - 1
2

X - 1
4

Y

4 2 1 11
1 2 0 3

2 1 4 16

X
Y
Z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Example (cont.)

Second iteration: use the iterated values X1=2, Y1=2, Z1=13/4
X2 = (11/4) - (1/2)Y1 - (1/4)Z1 = 15/16
Y2 = (3/2) + (1/2)X1 = 5/2
Z2 = 4 - (1/2) X1 - (1/4)Y1 = 5/2

Final solution [1.014, 2.02, 2.996]
Exact solution [1, 2, 3]

5 4 5 4 5 4

Converging Process:
13 15 5 5 7 63 93 133 31 393[1,1,1], 2,2, , , , , , , , , ,
4 16 2 2 8 32 32 128 16 128

519 517 767, , . Stop the iteration when 
512 256 256

max , , 0.1X X Y Y Z Z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

− − − ≤
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Example (cont.)
(b) Gauss-Seidel iteration: Substitute the iterated values into the 
iterative process immediately after they are computed.

0 0 0

1 0 0

1 1

1 1 1

Use initial guess X 1
11 1 1 3 1 1 1, , 4
4 2 4 2 2 2 4

11 1 1First iteration:  X = ( ) ( ) 2
4 2 4
3 1 3 1 5(2)
2 2 2 2 2

1 1 1 1 5 194 4 (2)
2 4 2 4 2 8

5 19Converging process: [1,1,1], 2, ,
2 8

Y Z

X Y Z Y X Z X Y

Y Z

Y X

Z X Y

= = =

= − − = + = − −

− − =

= + = + =

⎛ ⎞= − − = − − =⎜ ⎟
⎝ ⎠

⎡
⎣

29 125 783 1033 4095 24541, , , , , ,
32 64 256 1024 2048 8192

The iterated solution [1.009, 1.9995, 2.996] and it converges faster

⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎦ ⎣ ⎦ ⎣ ⎦

Immediate substitution
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Numerical Method (Special Cases)
For all the special cases discussed 
in the following, the derivation will 
be based on the standard nodal 
point configuration as shown to the 
right.

m,n

m,n+1

m,n-1

m+1, nm-1,n

Symmetric case: symmetrical relative to the A-A axis.
In this case, Tm-1,n=Tm+1,n
Therefore the standard nodal equation can be written as 

axis A-AA

A

1, 1, , 1 , 1 ,

1, , 1 , 1 ,

4
2 4 0

m n m n m n m n m n

m n m n m n m n

T T T T T
T T T T

+ − + −

+ + −

+ + + −

= + + − =

q1

q2

q3

q4
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Special cases (cont.)

Insulated surface case: If the axis 
A-A is an insulated wall, therefore 
there is no heat transfer across A-A. 
Also, the surface area for q1 and q3
is only half of their original value.
Write the energy balance equation 
(q2=0):

m,n

m,n+1

m,n-1

m+1, nm-1,n

q1

q2

q3

q4

A

A

1 3 4

, 1 , , 1 , 1, ,

1, , 1 , 1 ,

0

0
2 2

2 4 0
This equation is identical to the symmetrical case discussed previously.

m n m n m n m n m n m n

m n m n m n m n

q q q
T T T T T Tx xk k k y

y y x
T T T T

+ − +

+ + −

+ + =
− − −∆ ∆⎛ ⎞ ⎛ ⎞+ + ∆ =⎜ ⎟ ⎜ ⎟∆ ∆ ∆⎝ ⎠ ⎝ ⎠

+ + − =

Insulated surface
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Special cases (cont.)

With internal generation G=gV where g is the power generated 
per unit volume (W/m3).  Based on the energy balance concept:

( )

1 2 3 4

1 2 3 4

2
1, 1, , 1 , 1 ,

2

1, 1, , 1 , 1 ,

( )( )(1) 0
Use 1 to represent the dimension along the z-direction.

( 4 ) 0

( )4 0

m n m n m n m n m n

m n m n m n m n m n

q q q q G
q q q q g x y

k T T T T T g x

g xT T T T T
k

+ − + −

+ − + −

+ + + +
+ + + + ∆ ∆ =

+ + + − + ∆ =

∆
+ + + − + =
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Special cases (cont.)
Radiation heat exchange with respect to the surrounding 

(assume no convection, no generation to simplify the derivation).  
Given surface emissivity ε, surrounding temperature Tsurr.

m-1,n

m,n

m+1,n

m,n-1

Tsurr

q2 q3
q4

qrad From energy balance concept:
q2+q3+q4=qrad

+ + =

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

4 41, , , 1 , 1, ,
,

4 4
1, 1, , 1 , ,

4 4
1, 1, , 1 , ,

2 2

2 4 2

2
2 4 2

m n m n m n m n m n m n
m n surr

m n m n m n m n m n surr

m n m n m n m n m n surr

T T T T T Ty yk k x k x T T
x y x

k T T T T x T T

x x
T T T T T T

k k

εσ

εσ

εσ εσ

− − +

− + −

− + −

− − −∆ ∆⎛ ⎞ ⎛ ⎞+ ∆ + = ∆ −⎜ ⎟ ⎜ ⎟∆ ∆ ∆⎝ ⎠ ⎝ ⎠

+ + − = ∆ −

∆ ∆
+ + − − = −

Non-linear term, can solve using the iteration method
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